当前位置: 升儒教育 > 职业教育 > 正文

2024年考研线性代数怎么学

2024-11-23 09:03:20

对于数学科目的梳理,同学们应该要逐渐建立自己的知识体系,基础运算方便在保证效率的同时,也要保证质量,提升运算的正确率。那么,考研线性代数怎么学?

行列式

本章的考试重点是行列式的计算,考查形式有两种:一是数值型行列式的计算,二是抽象型行列式的计算。另外数值型行列式的计算不会单独的考大题,它的计算主要是出现在大题当中的某一问或者是在大题的计算过程中需要计算行列式,比如求特征值其实质就是计算含参的数值型行列式,题目难度不是很大。

而抽象型行列式的计算主要分为五类:利用行列式的性质、利用矩阵乘法、利用特征值、直接利用公式、利用单位阵进行变形。06、08、10、12年、13年的填空题均是抽象型的行列式计算问题,可利用行列式的性质求也可利用展开定理来做。

矩阵

本章的概念和运算较多,因此考点也较多,但是主要以填空题和选择题为主,另外也会结合其他章节的知识考大题。本章的重点较多,有矩阵的乘法、矩阵的秩、逆矩阵、伴随矩阵、初等变换以及初等矩阵等。其中这几年均考查的是初等变换与矩阵乘法之间的相互转化,抽象矩阵求逆的问题,这几年考查的形式为小题,

而13年的两道大题均考查到了本章的知识点,第一道题目涉及到矩阵的运算,第二道大题则用到了矩阵的秩的相关性质。这几年考查的仍然是矩阵乘法与线性方程组结合的知识,但是除了这些还涉及到了矩阵的分块。

向量和线性方程组

向量的重点较多,有概念、性质还有定理,出题方式主要以选择与大题为主。重要的概念有向量的线性表出、向量组等价、线性相关与线性无关、极大线性无关组等。这一章无论是大题还是小题都特别容易出考题,06年以来每年都有一道考题,不是向量组的线性表出就是向量组的线性相关性的判断。

线性方程组主要考点有两个:解的判定与解的结构。06年以来只有11年没有出大题,其他几年的考题均是含参方程的求解或者是解的判定问题,13年考查的第一道大题考查的形式不是很明显,但也是线性方程组求解的问题。

矩阵的特征值与特征向量和二次型

有三个考查重点。一是特征值与特征向量的定义、性质以及求法;二是矩阵的相似对角化问题,三是实对称矩阵的性质以及正交相似对角化的问题。实对称矩阵的性质与正交相似对角化问题可以说每年必考,13年、12年、11年、10年、09年都考了。

二次型两个重点:一是化二次型为标准形;二是正定二次型。前一个重点主要考查大题,有两种处理方法:配方法与正交变换法,而正交变换法是考查的重中之重。12年、11年、10年均以大题的形式出现,考查的是利用正交变换化二次型为标准形。

展开全文

本站文章禁止转载,转载需向著作权人取得许可。

豫ICP备2023015579号